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Abstract—A new boundary element method is developed for two-dimensional quasistatic thermo-
elasticity. This time domain formulation involves only surface quantities. Consequently, volume
discretization is completely eliminated and the method becomes a viable alternative to the usual
finite element approaches. After presenting a brief overview of the governing equations, boundary
integral equations for coupled quasistatic thermoelasticity are derived by starting with existing
fundamental solutions along with an appropriate reciprocal theorem. Details of a general purpose
numerical implementation are then discussed. Next, boundary element methods for the two more
practical theories, uncoupled quasistatic and steady-state thermoelasticity, are developed directly
from limiting forms of the coupled formulation. Scveral numerical examples are provided to
illustrate the validity and attractiveness of the boundary element approach for this entire class of
problems.

INTRODUCTION

In recent years, the boundary element method (BEM) has been extended to the analysis of
a wide range of engineering problems. For many of these applications, the BEM is shown
to provide an attractive alternative to the more popular finite clement method, particularly
when the formulation can be written exclusively in terms of boundary quantities. BEM,
then, permits a reduction in the dimensionality of the problem. Thus, in a two-dimensional
boundary clement analysis, discretization is only needed along the bounding curve.

The present effort addresses planar problems in coupled quasistatic thermoelasticity
(CQT), and details, for the first time, a boundary-only time domain BEM formulation and
implementation. The more familiar uncoupled theories are shown to be just special cases
of the coupled theory, and are solved within the sume framework. For the uncoupled
quasistatic case, this again represents a new development, while under steady-state con-
ditions the well-established formulation of Rizzo and Shippy (1979) is recovered. Since
considerable attention has focused on the thermoelastic problem, a brief review of the
relevant BEM literature follows. Some references relating to poroelasticity are cited as well,
because in the fully coupled case the governing differential equations for both theories have
an identical form.

The early BEM work, carried out by Rizzo and Shippy (1977) and Cruse et al. (1977),
pertained to steady-state thermoeclasticity. The approach consisted of an initial phase in
which a boundary element analysis of steady-state heat conduction was employed to
determine the surface temperature and flux distribution. In the second phase, the resulting
temperatures were applied as body forces in an elastostatic BEM to obtain deformation
and stress. General properties of the steady-state temperature field were exploited to reduce
the thermal body force volume integral to surface integrals involving the known boundary
temperatures and flux. Thus, the entire two step process required only surface discretization.

In the quasistatic realm, Banerjee and Butterfield (1981) presented a staggered pro-
cedure for solving the coupled equations. The algorithm requires the solutions of the
transient pore fluid (or heat) flow equation followed by an elastic analysis including body
forces at each time step. Unfortunately, this is not a boundary-only formulation, and
complete volume discretization is required. Cheng and Liggett (1984), on the other hand,
investigated two-dimensional poroelasticity via a formulation in the Laplace transform
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domain. While this is a boundary-only approach, the procedure is not, in general, satis-
factory. The transform domain formulation is sensitive to the selection of values of the
transform parameter, requires a numerical inversion of the transform, and is limited to
strictly linear problems.

Returning to thermoelasticity, Tanaka and Tanaka (1981) presented a reciprocal
theorem and the corresponding boundary element formulation for the time-domain coupled
problem. However, kernel functions are not discussed and no numerical results are included.
In fact, more recently, Tanaka er al. (1984) choose instead to implement the volume-based
thermal body force approach of Banerjee and Butterfield. In a series of papers. Sladek and
Sladek (1983, 1984a.b) presented a collection of fundamental solutions, in both Laplace
transform and time domains, under the classifications of coupled, uncoupled, transient,
and quasistatic thermoelasticity. Boundary integral equations were also included although
in several instances these were written inappropriately in terms of displacement and traction
rates. Kernel singulanties were not discussed and a numerical implementation was not
attempted. More recently, Chaudouet (1987) again resorts to the volume-based approach,
while Masinda (1984) and Sharp and Crouch (1986) have directed efforts toward converting
the thermal body force volume integral into a surface integral. Masinda, working in three
dimensions, preseats some formulations, but stops short before attempting an implemen-
tation. On the other hand, Sharp and Crouch develop an approach for two-dimensional
quasistatic thermoclasticity using time-dependent Green's functions. However, the authors
then introduce volume integrals in their time marching algorithm. This, unfortunately,
undermines most of the advantages of the BEM.

In the following, boundary element formulations are developed for coupled quasistatic
thermoclasticity (CQT), uncoupled quasistatic thermoclasticity (UQT), and stcady-state
thermoclasticity (SST). All three involve only boundary quantities, and, thus, discretization
of the interior of the body s not required. These formulations have been implemented in
GP-BEST, a large-scale boundary clement computer program. As a result, quite general
thermoclastic problems with arbitrary multi-region geometry and time-dependent boundary
conditions can be solved. Details of the implementation are presented, as are several
numerical examples to demonstrate the validity of the method.

COUPLED QUASISTATIC THEORY

Governing equations

Since a complete derivation of the thermoclastic theory can be found in the textbooks
by Boley and Weiner (1960) and Nowacki (1986), only a few of the key assumptions will
be mentioned before presenting the governing differential equations under plane strain
conditions. In particular, the classical theory assumes infinitesimal deformations and linear
isotropic materials. Thus, the lincarized strain-displacement relationship

&, = Mu,,+u,)) (H

is employed, along with constitutive laws of the form

g, = 0, At +2ue, — 0,34+ 2u)x(0 - 0,) (2)
g, = —k0, (3)
where
u, displacement vector
&, strain tensor
6,  stress tensor
0 present temperature
o temperature of a zero stress reference state
q, heat flux vector

A i Lame’s isothermal elastic constants
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a coefficient of thermal expansion
k thermal conductivity
6,  Kronecker’s delta.

Then, application of the laws of conservation of momentum and energy lead, in the absence
of inertia, to the following set of equations for plane strain:

kB,,—,—pc,(?——(3l+2;z)a00d,-.j+(// =0, (4b)

in which p is the mass density, c, is the specific heat at constant deformation, while £
and ¢ are the body forces and sources, respectively, and dots represent differentiation
with respect to time. The theory portrayed by (4) is formally named Coupled Quasistatic
Thermoelasticity (CQT). Notice, in particular, the appearance of displacement and tem-
perature in both equations. Thus, in CQT not only do changes in temperature cause de-
formation, but also deformation produces temperature variations. In general, the set of
equations (4) must be solved simultaneously. However, from an engineering viewpoint,
it has been determined by a number of researchers (e.g. Boley and Weiner, 1960; Day,
1982) that the term involving displacement in (4b) is negligible, thus uncoupling the momen-
tum and energy balance equations. Dropping that term, equation (4b) can first be solved
independently for the temperature field. Subsequently, displacements are determined
from (4a) with the known temperature distribution. This is, in fact, the accepted pro-
cedure for thermal stress analysis. For now, the general, fully coupled theory governed by
(4) will be retained.

To complete the formulation of a well-posed problem, boundary and initial conditions
must, of course, be specified. Formally, the boundary condition for all points x on .S can
be written as

u, = U(X,1) (5a)
or
,=T/(X,0) (5b)
or
L = K(X, D)y, (5¢)
and
8=0(X,1 (6a)
or
g=0(X.0 (6b)
or
g = HX, )[Oums(X, 1) - 0]. (6¢)
In addition, the initial conditions
u;, = UNZ) (72)
0 =0°2) (7b)

are required for all points Z, in ¥ at time zero which in the present analysis has been
assumed to be zero for simplicity. In the above, g is that heat flux normal to the surface S,
and ¢, is the traction vector defined by
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L, =gag,n, (8)

Note that (5¢) and (6¢) represent the familiar spring and convection boundary conditions.
respectively, in which

K(X.1) spring stiffness
H(X. 0 film coefficient
Qume( X, 1) ambient fluid temperature.

The specification of (5), (6) and (7) along with (3) completely defines the CQT problem.

Fundamental solutions

An essential ingredient in the development of a boundary integral equation for plane
strain CQT is the appropriate time-dependent fundamental solutions. These required
Green's functions have been derived by Rice and Cleary (1976) and Rudnicki (1987) within
the context of the analogous theory of poroelasticity. Results are provided below after
translation into standard thermocelastic nomenclature.

First, consider the effect of unit step forces acting in the j-direction at the points
(1. &..x;y) where the range on x;is from — ¢ to + 0. Thus, the applied force is a line
load. The response, at any point (¥, x,,0), is given by

I | AT
ulXo0) = o~ - - ”’ G +0,)g.(m (e, (9a)
8 p(t—=v) |\ r
r B [y
) - - : R P N (4
0.0 =, </\‘(}-+2,ﬂ)>[< r)a_x(r/)](, (9b)
where
f=(3A+2u)x (10
V=X (11a)
r= (11b)
¢ = k (’+2“) - (l1¢)
pe, ( N >
At e 2
\ l)l'.(’.
.
Y]z—’(c‘l‘)l': (lld)
ity =l+c i t=h(n)} (12a)
G:(m) = =G =4v) In r+c, {h(m)} (12b)
e
Gim =" '4(,5') (120)
and
(1=2v) O,8° v, —v
o er 13
“ A421 pe, I—v, (13)
4 N
fip = 51— (14a)

n?
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Fan) = %[E,(%)Hn (§>+El]. (14b)

The function E, is the exponential integral defined by

E(5) = f i °: dx. (15)

Additionally, in (13) an isentropic Poisson ratio has been introduced for later use, where

pi

Tt (16)

Next, the continuous line heat source Green's function is presented. In this case, the
resulting displacement and temperature fields are

r B Yil -
it = i ()| ()0 e

1 {1
0(X.0) = In (E)l‘(iﬁ(”)] (17b)

(1)

where

- _ ﬁl (n)
gum =1 ———2 (18a)
2
)
gs(m = 7 (18b)

It should be noted that, in the above, the evolution functions §,(n) carry the solution from
isentropic behavior at very short times to a final steady-state form at very long times.

Boundary integral formulution

A reciprocal theorem generally provides a convenient starting point for a direct bound-
ary element formulation. For the coupled problem at hand, it appears that lonescu-Cazimir
(1964) was the first to explicitly state an appropriate reciprocal theorem, although certainly
the groundwork was laid earlier by Biot (1959). In the context of Coupled Quasistatic
Thermoelasticity, that theorem can be written, for a body of volume ¥ and surface S with
zero initial conditions, in the following time-domain form:

j[l'fl)‘u:Z)_*_q(l)‘0(2l_l-"(l)‘11(2)_0“)“,(2)] ds

(]

+f[f:”.u52’+.//“u0m—a,“"f,‘.”—o“’up“’] dv=0. (19)

The superscripts ‘" and ¥ denote any two independent states existing in the body defined
by [a", £, 6", ¢, /" ¢ and [u®, (2, 02, g0, £, Y2, respectively. The symbol
+ indicates a Riemann convolution integral, where, for example
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~

{

gl e =J ¢ (X, t—1)8'"(X. 1) dt =J 7" (X, 1)V (X.1—1) dr. (20)
) 0

It should be mentioned that the form of (19) above will lead to a boundary element
formulation with displacement, traction, temperature and flux as primary quantities. Other
researchers, notably Predeleanu (1981) and Sladek and Sladek (1984b). have written equally
valid reciprocal statements that. unfortunately, lead to a much less desirable set of primary
variables including. for example. displacement and traction rates.

Let one of the states above, say state (2). be the, as yet, unknown solution to a given
boundary value problem defined by eqns (4)-(7). Then the remaining state may be chosen
arbitrarily. However, by initially selecting for state (1). the infinite region response to a unit
step continuous line force in the j-direction acting at ¢ within }” and beginning at time zero,
the volume integrals in the reciprocal theorem can be made to vanish. That is. in equation
(19), at any point Z in V, let the applied forces and sources equal

fINZ.0) = HZ-EH(NS, e, (21a)
y'N(Z.1) =0, (21b)
and represent the response by
WX, ) =G (X=EDe, (21¢)
0(X, 1) = Gy (X =E e, (21d)
(X 1) = F(X=CE e, (21e)
¢(X ) = Fy (XY =& ne,. (216

In this notation, the subscript 0 in (21d) and (21f) does not vary, but instead takes the
vitlue three for two-dimensional problems. Obviously, equations (21¢) and (21d) are the
same fundamental solutions that were presented in the previous sections, but now with a
different nomenclature. On the other hand, the functions F, (X' —Z, 1) and F, (X =<, 1) can
be obtained directly from G,, and G, through constitutive relationships. The superposed
dots in (21d) and (211) represent time derivatives which have been introduced for notational
convenience. Ultimately, only the kernel functions G,,, G,,, F,; and F,;, will be required in
explicit form.,

Next for simplicity, assume that no body forces or heat sources exist in the actual
boundary value problem. Then, the reciprocal relation, equation (19), can be rewritten

J[F,,(X— E el (X )+ Fy (X =5, e, »0(X, 1)
~G(X=E e, « 12X, 1) =G, (X =& De, » g (X, 1)] dS(X)

+J[¢i(z—:)5(1)o},e, «uNZ, 0] dV(Z) =0. (22)
After some simplification, this becomes

o, u (i, 1) = j[G,,(X—i.I) st (X )+ Gy (X—=E 1) xq(X. 1)
— E (X =& 0 x4 (X, 1) = F, (X =&, 1—1) » 0(X, 0] dS(X)., (23)

in which the superscript (2) has now been dropped.
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Equation (23) is an integral equation for interior displacement that involves only
boundary quantities. Therefore, volume integration has, indeed, been eliminated through
the use of an infinite space Green'’s function.

Evidently, equation (23) is the desired expression for the displacement vector at any
interior point ; however, a similar relationship is also desired for interior temperature. To
that end, return to the reciprocal theorem (19) and select, instead, for state (1) the infinite
space respoase to a unit pulse, continuous line heat source, acting at time zero and at point
¢ within V. That is, let

SNz, =0 (24a)

Y "(Z.0) =8(Z-8E)d) (24b)
and consequently,

u"(X.0) = Go(X—&.0) (24¢)

0K, 1) = Gup(X~&, 1) (24d)

("X, 1) = Fp(X—¢,0) (24¢)

qU(X. ) = Fp(X=E,1). (24f)

Since this is the solution due to a unit pulse. the functions G, and G, are the time derivatives
of the unit step Green's functions presented previously. In the end, it will be the kernel
functions G, Gw. Fy and Fy, that will be of primary importance, rather than their time
derivatives.

Now, again, state (2) is chosen to be the actual problem, in which body forces and
heat sources are absent. Thus, the reciprocal theorem reduces finally to the form

()(é. l) = J[G/‘)(X-é; [) * ’t(f‘/s ’) +GIMI(X—S=' ’) * ‘1(4‘/- ’)

—Fy(X =&, 0) v u,(X,0)— Fp(X—&.0) » (X. )] dS(X). (29)
This, of course, is the desired statement for interior temperatures in terms of boundary
quantitics.

Equations (23) and (25) can now be combined and rewritten in a more convenient
matrix notation as

{u,(é. :)} J([GI,G,,, ]'r {r.(x. :)} [F,-,Fm ]'r {u,(x. r)}) g 26
- -1, S(X). 2
0, s Gathm * q(X, 1) Fquuo * 0(X, 1) 0 (26)
However, this can even be further compacted by generalizing the displacement and traction
vectors to include temperature and flux, respectively, as an additional component. Thus, in

two dimensions,

u, = {uy, wuy 0}7 (27a)
L,={t, t, q}7, (27b)

where the Greek index a, and subscquently f, varies from one to three. Then (26) becomes
simply

“:(é* ’) = J.[Gﬂu * ’ﬂ(Xv ’) —Fﬁfx * uﬂ(Xv I)] dS(X)' (28)

Equation (28) can be viewed as a gencralized Somigliana’s identity for coupled quasistatic
thermoelasticity, and, as such, is an exact statement for the interior displacements and

SAS 25:9-C
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temperatures at any point ¢ within ¥ at any time r. However, to determine those interior
quantities, the entire history of boundary values of «, and r, must be known. Unfortunately.
in a well-posed boundary value problem only half of that information is given at each
instant of time. In order to obtain the missing information. and in essence, solve the problem
the point ¢ must be moved to the boundary.

The process of writing (28) for a point on the boundary is not without complications.
due to the singular nature of the kernel functions as X — £ and t — 1. Considerable carc
must be exercised in evaluating these singular integrals. As a result, a constant matrix ¢, (¢)
is introduced and terms associated with Fy, must be treated as Cauchy principal value
integrals. The new matrix ¢y, is a function only of the local geometry of the boundary at &,
and reduces to d,,/2 along a smooth surface.

With that in mind. the boundary integral formulation for CQT can be written

DUy (S0 = J [Gya % 15 (X. 1) — Eyy # 145 (X. )] dS(X). (29)

In principle. at each instant of time progressing from time zero, this equation can be written
at every point on the boundary. The collection of the resulting equations could then be
solved simultaneously, producing exact values for all the unknown boundary quantities. In
reality, of course, discretization is needed to limit this process to a finite number of equations
and unknowns.

Numerical implementation

The boundary integral equation (29) is an exact statement. No approximations have
been introduced other than those used to formulate the boundary value problem. However,
in order to apply (29) for the solution of practical enginecring problems, approximations
are required in both time and space.

FFor the temporal discretization, the time interval from zero to ¢ is divided into NV cqual
increments of duration Ar. Within cach time increment, the primary ficld variables, 1, and
1y, arc assumed constant. As a result, these quantities can be brought outside of the time
integral. Since the integrand remaining is known in explicit form from the fundamental
solutions, the required temporal integration can be performed analytically, and written as

nit
Gy "(X=9) =J Gy (X =& 1—1) dr. (30)
{

n-—- 1)A1

Combining this, and similar expressions for the £y, integral, with (29) produces

i
a@ui (§) = Y | G (X=X —FLM (X =9 (X)] dS(X). (3D
| Js
The explicit form of the kernel functions, present in (31) are detailed in the Appendix.
The singularities, inherent in these kernels, when the load point and field point coincide.
arc of considerable importance. Serics expansions of terms present in the evolution functions
can be used to deduce the level of singularities existing in the kernels. Table | summarizes
the results for plane strain CQT.

Table 1. Kernel singularities for plane strain CQT

Term Level of singularity Term Level of singularity
G! in r F !
;
G non-singular " non-singular
G, non-singular £, Inr

Gl Inr .'m !
.




Development of a boundary element method 1007

A number of observations should be emphasized. First, as would be expected, F); has
a stronger level of singularity than does the corresponding Gy, since an additional derivative
is involved in obtaining F,; from G)s. Second. the coupling terms do not have as a high
degree of singularity as do the corresponding non-coupling terms. For example, compare
G, and G;, to G,,. Third, all of the kernel functions for the first time step could actually
be rewritten as a sum of steady-state and transient components. That is,

Gly = "Gy + Gl
F,ls = ssF’ﬂ +"F,,ﬂ.

Then, the singularity is completely contained in the steady-state portion. Furthermore, the
singularity in G; and F}, is precisely equal to that for elastostatics, while the Gy, and Fj,
singularities are identical to those for potential flow. This observation is critical in the
numerical integration of the F,; kernel to be discussed in the next subsection. However,
from a physical standpoint, this means simply that, at any time ¢, the nearer one moves
toward the load point. the closer the quasistatic response field corresponds with a steady-
state ficld. Eventually. when the sampling and load points coincide, the quasistatic and
steady-state responses are indistinguishable. As a final item, after careful examination of
the Appendix, it is evident that the steady-state components in the kernels G35 and Fjg,
with # > 1, vanish. [n that case, all that remains is a transient portion that contains no
singularitics. Thus, all singularitics reside in the *G,; and *F,; components of G and F;.
respectively.

Next, spatial discretization is introduced in order to evaluate the surface integrals
appearing in (31). In the present implementation, both lincar and quadratic boundary
clements are available for the description of the geometry, as well as the primary field
vartables, Once the discretization is defined, the nodal generalized displacements and trac-
tions can be brought outside the surface integral. Then, the remaining shape function-kernel
products are integrated numerically. Sophisticated, sclf-adaptive integration algorithms are
employed to ensure accuracy and numerical efficiency (Banerjee et al., 1986 ; Ahmad and
Banerjee, 1988).

With the discretization of the boundary integral equation, in both time and space,
complete, a system of algebraic equations can be developed to permit the approximate
solution of the original quasistatic problem. This is accomplished by systematically writing
the integral equations at each global boundary node. The ensuing nodal collocation process
produces a global set of equations of the form

Y (G ek = [T}y = (o), (32)

n-|

in which [} and {«"} arc nodal quantitics with the superscript referencing the time step
index. It should be noted that during this collocation process, the indirect *‘rigid body™
technique (Cruse, 1974 ; Banerjce et al., 1986) is employed to determine the strongly
singular diagonal block of [F').

In a well-posed problem, at any time ¢, the set of global generalized nodal displacements
and tractions will contain cxactly 3P unknown components,where P is the total number of
functional nodes. Then, as the final stage in the assembly process, equation (32) can be
rearranged to form (Banerjee ¢t al., 1986) :

[A{x"} = [B') (5"} = T (IG*'="{t"} = [F**'"]{u'}) (33)

in which {x"} and {3} represent the unknown and known nodal components, respectively.
In addition, the summation represents the effect of past events. Thus, all quantities on the
right-hand side of (33) are known at time step V.
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[t should be emphasized that the entire boundary element method presented, in this
section, has involved surface quantities exclusively. A complete solution to the well-posed
linear quasistatic problem. with homogeneous properties, can be obtained in terms of the
nodal boundary response vectors, without the need for any volume discretization.

In many practical situations, however, additional information. such as the temperature
at interior locations or the stress at points on the boundary. is required. Once equation (33)
is solved. at any time step, the complete set of primary nodal quantities, {¢*} and [V}
is known. Subsequently, the response at points within the body can be calculated in a
straightforward manner. For any point ¢ in the interior, the generalized displacement can
be determined from (29) with ¢;, = §;,. However, when ¢ is on the boundary. the strong
singularity in * £, prohibits accurate direct evaluation of the generalized displacement, and
an alternate approach is required. The apparent dilemma is easily resolved by recalling that
the variation of surface quantities is completely defined by the elemental shape functions.
Thus, for boundary points, the desired relationship is simply

u (3) = N, (O, (34)
where N,,({) are the shape functions for the appropriate element and o are the intrinsic
coordinates. Obviously. from (34), neither integration nor the explicit contribution of past

events are needed to evaluate generalized boundury displacements.
Meanwhile, interior stresses can be evaluated from

N M
ay(&) =Y {Z [z;;.,.j Exr' (X (O = &N () dSLYE))
Sm

n=t w1

“ll}}mj Dt X () =N dS(-Y(C))}} (35)
5

in which
uv . AG” 26T 0GT, , ,
EL (@ - = "0 5,00 +u( BT ) 55, G (36)
1 —2v 0F, s, g,
..;w . OF7, oFn OFY, .
m;(k (Q)"S) = 2"(3,,' f?yl:/‘ +}‘(n:, + (?a,, /f(’,,[ e (36b)

These are detailed in the Appendix.
Since strong kernel singularities appear when (35) is written for boundury points,
surface stress can, instead, be obtained from

n ()l (E) = N, (O, (37a)

ol (&)~ =2 ‘f"" (U8 (&) + Ui () = — PO, N, (e, (37b)
(/V 7N,,,

o (@ =" (37¢)

in which «;, is obviously the nodal temperatures, and
Dfl“ = }.().,'/ls,‘[ -+ 2[!(5,/( (5,,.

Equations (37), which are an extension of the technique developed by Cruse and Van Burcn
(1971). form an independent set that can be solved nummcally for a(3) and (&)
completely in terms of known nodal quantities u¥ and t3,. without the need for kernel
integration or convolution. Notice, however, that shape function derivatives appear in
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(37¢), thus constraining the representation of stress on the surface element to something
less than full quadratic variation. _

The entire coupled quasistatic formulation has been implemented directly in GP-BEST,
a state-of-the-art, general purpose boundary element computer program. Consequently,
many additional features are available for the analysis of complex engineering problems,
including multi-region capability, symmetry options, and a high degree of flexibility for the
specification of boundary conditions.

UNCOUPLED QUASISTATIC THERMOELASTICITY

A simplification of CQT recovers the more traditional thermoelastic theory by ignoring
the coupling in the energy equation. As discussed in Boley and Weiner (1960), the effect of
this coupling for typical engineering materials is negligible within a quasistatic framework.
Consequently, the resulting theory, labeled uncoupled quasistatic thermoelasticity or UQT,
has a wide range of applicability. In this case, the governing differential equations (4)
reduce to

(A+1u, i+ pu, j; — 3A+2pald, + £, =0 (38a)
k0., —pc.b+y = 0. (38b)

The practical significance of this simplification is that the energy equation no longer involves
the deformation field. Thus, the temperature and flux can be obtained from (38b) as an
independent initial phase. Subsequently, the deformation response is determined by satisfy-
ing (38a).

The kernel functions for UQT can be developed directly by considering limiting forms
of the CQT kernels. In particular, the G,; components reduce to their elastostatic counter-
parts, since unit forees in an uncoupled thermoelastic body produce a strictly instantancous,
isothermal response. As a further consequence of the unit force behavior, the Gy terms
vanish. The remaining components of G are unchangd in form. However, for UQT, the
diffusivity, upon which the evolution functions are based, becomes independent of the
clastic propertics, and reduces to its classical definition under conditions of transient heat
conduction. Thus,

k
¢ =

pe,’

(39)

With the nature of the kernel functions for UQT in mind, the integral equations (31) can
be rewritten as

cm (§)uy (§) = Z (G ' " (X =35 (X) = Fit " (X = §)u (X)] dS(X) (40a)

LEREL

AGIAG] =J (G, (X =&)Y (X) = Fy (XY= {)u’ (X)] dS(X)

+Z [Ga)t ' (X =) 5 (X) = F; " (x =gy (X)] dS(X).  (40b)

nelds

While these appear to be a bit more cumbersome than (31), significant computational
advantages are present for UQT. Notice, in particular, that (40a) does not involve dis-
placements nor tractions, and therefore can be solved independently as a single degree of
freedom problem. Additionally, from (40b) it is obvious that the surface integrals involving
G, and F; do not require time convolutions. In fact, convolution is only needed for the



1010 G. F. DarcusH and P. K. BANERJEE

temperature and flux terms, and for time steps beyond the first, all these kernels are non-
singular. The result is a highly efficient boundary element method for UQT which involves
only surface quantities.

STEADY-STATE THERMOELASTICITY

The second simplification of the general theory involves the removal of the time-
dependent nature of the problem. As a consequence, it is assumed that loads are applied
slowly, and that all of the resulting diffusive processes have been completed. In other words,
the thermoelastic body is presumed to have reached steady-state. The governing differential
equations now become

(A+wu, +uu ,—Ga+2a0, + f, =0 (4la)
S /
kO, +i = 0. (41b)

Obviously. this is again an uncoupled theory, since the energy equation does not involve
the deformation of the body. Itis also a very practically significant theory. since the response
of many structures must be examined under long-time loading, as well as during transicnts.

The fundamental solutions associated with (41) are simply the limiting forms of the
quasistatic solutions. For example, the response to a unit step force at & n the j-direction
is

A N T AT
Xy = - o 3 34y , 32;
u (X} 8?{;:(!—&’}[( e )+(«,,)( \)lnr}c, (420

(X)) =0, (42b)

whilc the response due to @ unit step heat source at € can be written as

u(X) = L <~—ﬁ )[("v")(l -2 In r)] {43a)
8 \k(2+2u) r
1 /1t

HX) = yx \ i [in #]. {43b)

The corresponding kernel functions developed from these Green's lunctions are, of course,
identical to those that were derived by Rizzo and Shippy {1979) by another method.

With time-dependency completely eliminated, there is no longer any need for con-
volution integrals. Conscquently, the boundury integral equations can be compacted to the
form

o (Sug () = j [Gun (X =)ty (X) = Fi (X = )ty (Y] dS(X) (44a)

v

e, (§u (3 = f (G (X =36, (X) = F (X = D ()] dSCY). (44b)

Once again. the thermal problem (44a) can be solved as an independent step. prior to the
thermal stress analysis governed by (44b).

Under steady-state conditions, a plane stress boundary element method can be
developed from the above by making the usual modifications of the thermoelastic constants.
Thus, a plane stress problem with material properties £, v and « is identical to the plane
strain problem involving £, ¥ and &, where
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-~ E(1+2v)
F=umT o
= — 4sb
V= T+ (45b)
__a(l+v)
a—TE—. (45C)

In the quasistatic case, it is, in general. not possible to fulfill the plane stress conditions and.
at the same time, exactly satisfy the governing equations of three-dimensional thermo-
elasticity [see Boley and Weiner (1960) for a discussion]. However, the transformations
noted in (45) can still be used to approximate plane stress solutions for thin bodies. although
some caution is warranted.

APPLICATIONS

All three formulations (CQT, UQT and SST) have been implemented in a general
purpose BEM system (GP-BEST). Because of extremely weak coupling, CQT and UQT
produce almost identical answers, therefore in the time-dependent examples presented
below, only UQT results are presented.

Circudar disc

As a first example, transicnt thermal stresses in a circular disc are investigated. The
disc of radius “a” initially rests at zero uniform temperature. The top and bottom surfaces
are thermally insulated, and all boundaries are completely free of mechanical constraint,
Then, suddenly, at time zero, the temperature of the entire outer edge (i.e. r = ) is elevated
to unity and, subscquently, maintained at that level.

A GP-BEST boundary clement model of the disc with unit radius is shown in Fig. t.
Only four quadratic clements are employed, along with quarter symmetry. Ten interior
points are also included strictly to monitor response. In addition, the following non-
dimensionalized material propertics are arbitrarily sclected for the plane stress analysis :

E=1333 pc, =10
v=0333 k=10
a=0.75

® Corner nods
x O Midnode
X Interior point

Fig. 1. Circular disc. Boundary element modcl.
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TEMPERATURE

Results obtained under UQT for a time step of 0.005 are compared, in Figs. 2-4, to the
analytical solution presented in Timoshenko and Goodier (1970). Notice that temperatures,
as well as radial and tangential steesses are accurately determined via the boundary clement
analysis. In particular from Fig. 4, even the tangential stress on the outer edge is faithfully
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l.ce

e

.58

Analytical

.23 O GP-BEST (rra=g.@)

X GP-BEST (r/a~d.S}
© GP-BEST (r-ra=2.8)
%% - L
) .10 .2e .30

TIME
Fig. 2. Circular disc. GP-BEST results.

reproduced.

Bonded copper -brass bar

Consider next the thermal response of a composite formed by bonding a 16 in. long,
0.5 in. deep bruss bar continuously to the top of a copper bar of the same dimensions. The
assemblage, which is initially unstressed at zero temperature, is quickly heated by exposure
to 200°F air on the top (Y = 1.0) and bottom (Y = 0.0) surfaces. A convection coctlicient
of 250 in.-lb./scc. in.? 'F is assumed for this process. The remaining surfaces are insulated.
Meanwhile, all outer surfaces of the composite bar are considered truction free.

RADIAL STRESS

.40

.48
.32 - ——— fnalytical
O GP-BEST (rra=d.2)
X GP-BEST (r-sa=@.S5)
© GP-BEST (r-a=@.83
.20
.18 r
1]
«~
.e L e . _
.Qe .12 .28 .32 .48

TIME
Fig. 3. Circular disc. GP-BEST results.
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.38

TANGENTIAL STRESS

~-.5@ - Analytical
O GP-BEST (r-a=g2.@)
X GP-BEST (r-/a=2.35)
-.75 O GP-BEST (r/a=2.8)
+ GP-BEST (rva=1.Q)
-1.09 L L 1
.0a .18 .20 .30 .4@

TIME
Fig. 4. Circular disc. GP-BEST results.

Figure 5 displays the boundary element model which necessarily includes separate
generic modeling regions (GMRs) for the copper and brass components. Each GMR
consists of 18 quadratic elements connecting 37 boundary nodes. Three interior points are
also positioned inside cach region along the X = 0.0 plane. Notice that symmetry is invoked
on that X = 0.0 plane, so that only an 8 in. length of the bar is modeled. In addition to the
boundary conditions mentioned above, the node at X = 0.0, ¥ = 0.0 is fixed in the Y-
direction to prevent rigid body motion.

Standard room temperature propertics are utilized for the two materials. Thus, for
copper

E = 15.6 x 10° psi p¢, = 278 in.-Ib./in.? °F
v = 0.355 k = 48 in.-Ib/sec. in. °F

a=92x10"*%in./in. °F
whereas for brass

E = 15.0x 10° psi pc, = 274 in.-lb./in.*°F
v = 0.364 k =12 in.-Ib./sec. in. °F.
a=11.8x10"%in./in.°F

im
3

® Cornar node
O Midnode
X Intericr ooint

Fig. 5. Bonded copper-brass bar. Boundary element model.
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1.2@ 7
/o
A
/
!/
.73+ /
b
2 T
T i
> \
\ \
\ i
N Copper {
~ \‘\
N K
Y
.25 F N \
t=@.Ssec N \
N :
————— t=].0sec S
------------------ t=2.@sec S e ’ \
—_— e t=4.Psac ~ o !
.22 1 1 1~ \
a. 5Q. 1@9. 158. 2ea.

TEMPERRTURE (°F)
Fig. 6. Bonded copper -brass bar. GP-BEST results.

Based upon the material diffusivitics and the characteristic element size, a time step of
0.050 s s sclected for the GP-BEST analysis.

Naturally, due to differences in the thermal properties of the two materials, the tem-
perature profile is not symmetric about the bonded interface. This is evident in the GP-
BEST results displayed in Fig. 6, where temperatures are plotted vs depth at four distingt
instants of time. Intcrestingly, although the copper component warms taster as a whole, at
any given time the surface temperatures are always somewhat higher in the brass.

The transient thermal analysis, conducted under UQT conditions and summarized in
Fig. 6, is completely independent of the thickness. Such is not the case for the displacement
and stress response. Conscquently, in the present analysis. both plane strain (i.c. very
thick) and plane stress (i.e. very thin) approximations are examined. Figure 7 depicts the
downward vertical deflection with time for a point (X = 8.0, ¥ = 0.0) at onc end of the
bar. This bending is the result of the non-symmetric temperature profile mentioned above,
along with the mismatch in cocflicients of thermal expansion. Longitudinal stresses, away

.243

X Plane Strain
O Plane Stress

.a3a

Y-DISPLACEMENT (in)
3
[}
T

.a1a

1

.2 1.@ 2.8 3.@ 4.8

TIME (sec)
Fig. 7. Bonded copper -brass bar. GP-BEST results.
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2e.a
8.8
w
Z
x
>
g
A
Ll -
-20.@ | oo + Brass (X=2.@, Y=1.2}
o © Brass (X=2.8, Y=B.5)
+ +++" X Copper (X=3.@, Y=2.5)
-30.8 F+ ++,,+" O Copper (X=Q.2, Y~3.2)
e
~48.8 L L 1
.Q 1.2 2.8 3.0 4.0
TIME (sec)
Fig. 8. Bonded copper-brass bar. Plane strain.
28.9
13.@ |-
«
]
=
04
g
0 ¥
-28.8 F et + Brass (X-2.@, Y~1.2)
© Brass (X-3.8, Y=-3.5)
X Copper (X=Q.0, Y=2.5)
-32.@ F O Copper (X=3.@, Y=2.Q)
—-43.8 1 I t
.Q 1.e 2.9 3.8 4.0
TIME (sec)

Fig. 9. Bonded copper-brass bar. Plune stress.

from the ends, are plotted in Figs 8 and 9 for plane strain and plane stress, respectively. In
both cases, the transient thermal stresses are significantly higher than their stcady-state
counterparts. Of course, the steady-state solution can be obtained either by continuing the
transient algorithm for a large number of time steps or by directly using the steady-state
kernels. The latter approach produces the results presented in Table 2. Notice that the

Table 2. Steady-state results for a bonded copper-brass bur

Plane strain Plane stress
Tip deflection (in.) 0.035 0.025
Longitudinal stress (ksi)
Brass (X =0.0, Y = 1.0) +3.1 +1.9
Brass (X = 0.0, ¥ = 0.5) -6.3 -39
Copper (X = 0.0, Y =0.5) +6.4 +4.0

Copper (X = 0.0. Y = 0.0) ~3.2 =20
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Fig. 10. Turbine blade. Boundary element model.

plane stress formulation, as would be expected, consistently provides lower magnitudes for
deformation and stress for this thermally-driven problem.

Turbine blade

For the final application, the plane strain response of an internally cooled turbine blade
is examined under startup thermal transients. The boundary element model of the blade is
illustrated in Fig. 10. In this problem, the two GMR approach is chosen solely to enhance
computational efficiency. This is accomplished by reducing the aspect ratio of individual
GMRs and by creating a block banded system matrix. The leading (left-hand) GMR
consists of 26 quadratic elements, while 24 clements are uscd to model the trailing (right-
hand) region.

The blade is manufacturcd of stainless steel with the following thermomechanical
propertics ;

E =29.0x 10° psi pc,
v =030 k
a=96x10"%in./in."F

368 in.-lb./in.*°F
1.65 in.-Ib./scc. in. 'F.

]

During operation a hot gas flows outside the blade, while a relatively cool gas passcs
through the internal holes. The gas temperature transients are plotted in Fig. 11 fora typical
startup. Convection film coefficients are specified as follows :

200Q.
External Hot Gas
————— Internal Coo! Gas
15@Q.
L
o
% 1eea.
=
529.
Q A L L
a 4.2 8.9 12.2 16.8
TIME (sec)

Fig. 1 1. Turbine blade. Startup transient.
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2008 .
© Point A
X Pgint B
1583,
n e
o -]
Ov o
o )
E ° o <,c'Pd:’!’c:
°
1902, ° ,ZX&Xo °
o o o
o X o E xm)g
° x % 0 x* ] 4
[t o X R 5,(
oxx
S08. - O x
o X M
x
O
ox
X
a. L 1 !
.0 4.0 8.0 12.0 16.8

TIME (sec)
Fig. 12. Turbine blade. GP-BEST results.

Outer surface at leading edge 4 = 50 in.-lb./sec. in.2°F
Remainder of outer surface & = 20 in.-Ib./sec. in.2°F

Inner cooling hole surfaces h = 10 in.-Ib./sec. in.*°F.

A time step of 0.2 s is employed for the UQT GP-BEST analysis.

The response at two points A, on the leading edge and, B, at midspan are displayed
in Figs 12 and 13. Notice that tempcratures and stresses are consisently higher on the
leading edge, reaching peak values of approximately 1500 °F and ~60 ksi, respectively.
Also, as is evident from Fig. 13, significant stress reversals occur during this startup, As a
next step, these results from GP-BEST could be used as input for a fatigue analysis to assess
the durability of the design. In that regard, it should be emphasized that the stresses
presented for points A and B are surface stresses, calculated by satisfying the constitutive

’S.

sa.

2s.

SIGZZ (ksi)

© Point A

5. X Point B

-75. 1 1 1
.2 4.0 8.@ 12.8 16.0

TIME (sec)
Fig. 13. Turbine blade. GP-BEST results.
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laws, strain—displacement and equilibrium directly at the boundarv point. This can be
expected to produce much more accurate results than the standard practice utilized in finite
element approaches of extrapolating interior Gauss point stress values to the boundary.

CONCLUSIONS

In the present work, the boundary element method is extended to transient problems
of two-dimensional thermoelasticity. Integral formulations are first developed for coupled
quasistatic thermoelasticity. and then specialized to the more practical theories of uncoupled
quasistatic and steady-state thermoelasticity. The resulting steady-state formulation reduces
to that given by Rizzo and Shippy (1979). However, the new time-domain quasistatic
formulations also require only surface discretization, and consequently, are viable alter-
natives to finite element analysis for this class of problems. In addition, steep thermal
gradients, which often occur near the surface, can be more readily captured, since with the
boundary element approach there are no shape functions to constrain the solution in the
direction normal to the surtace. For example. the circular disc analysis indicates the level
of accuracy that is obtainable with the present BEM.

All three thermoelastic formulations are implemented, for both plane strain and plane
stress, in GP-BEST, a general purpose boundary element code. As a result, realistic thermo-
elastic engineering analysis can be performed. The three detailed examples highlight the
validity of the formulations and some potential applications.

Acknowledgements —The work deserthd in this paper was muade possible by a grant from United Technologies
Corporation. The authors are indebted to Drs R. B Wilson and E. Todd of Pratt and Whitney for their support
and encouragement.

REFERENCES

Ahmad, 8. and Banerjee, P K. (1988). Transient elistadyniamic analysis of three-dimensional problems by BEM.
Int. J. Numer. Meth, Engng 26(8), 1560 1380,

Banerjee, P. K., Ahmad, S, and Manolis, G D, (1986}, Transient elastodynamic analysis of three-dimensional
problems by boundury clement method. Furthquake Engng Structural Dyna. 14, 933-949,

Bianerjee, P K. and Butterfield, R (1981). Boundary Element Methods in Enginecring Science. McGraw-till,
London.

Biot, M. A. (1959). New thermomechanical reciprocity relations with application to thermal stress analysis. J.
Aerospace Sci. 26(7), 401 -408.

Boley, B. AL and Weiner, J. L (1960). Theory of Thermal Stresses. John Wiley and Sons, New York.

Chaudouet, A, (1987). Three-dimensional transient thermoclustic analysis by the BIE method. fnt. J. Numer.
Meth, Engng 24, 2545,

Cheng, A H-D.and Liggett, AL (1984}, Boundary integral equation method for linear porous-elasticity with
applications to soil consolidation. fne. J. Numer. Meth. Engng 20, 255--278.

Cruse, T. AL (1974). An improved boundary integral equation method for three-dimensional elastic stress analysis.
Comput. Struct. 4, 741 754.

Cruse, T. A. Snow, D. W. and Wilson, R. B. (1977). Numerical solutions in axisymmetric elasticity. Comput.
Struct. 7, 445- 451,

Cruse. T. A, and VanBuren, W. (1971). Three-dimensional clastic stress analysis of a fracture specimen with an
edge crack. fnt. J. Fruct. Mech. 7,1 16.

Day, W. A. (1982). Further justiication of the uncoupled and quasi-static approximations ia thermoclasticity.
Arch. Ratl Mech, Anal. 79(1), 387 396,

fonescu-Cazimir, V. (19643, Problem of lincar coupled thermoclasticity. Theorems on reciprocity for the dynamic
problem of coupled thermoclasticity. L. Bull. dcad. Polonaise Sci. Sertes Sci. Tech. 12(9), 473-488.

Masinda. J. (1984). Application of the boundary ¢lements method o 3D problems of non-stationary thermo-
clasticity. Engng Anal. 1, 66 69.

Nowackt, W. (1986). Thermuoelasticity, Pergamon, Warsaw.

Predeleanu, M. (1981). Boundary integral method for porous media. In Boundary Methods (Edited by C. A.
Brebbia), pp. 325334, Springer, New York,

Rice, J. R. and Cleary, M. P. (1976). Some basic stress diffusion sotutions for fluid-saturated elastic porous media
and compressible constituents. Rer. Geophys. Spuce Phys. 142), 227-241

Rizzo, F. 1. and Shippy. D. J. (1977), An advanced boundary integral equation method for three-dimensional
thermoelasticity. /ne. J. Numer. Meth. Engng F1, 1753-1768.

Rizzo. F. J. and Shippy. D. J. (1979). The boundary clement method in thermoelasticity. In Developments in
Boundary Element Methods—1 (Edited by P. K. Banerjee and R. Butterficld). Applied Science Publishers.
London.

Rudnicki, J. W. (1987). Fluid mass sources and point forces in linear elastic diffusive solids. Mech. Mater. S, 383
393,



Development of a boundary element method 1019

Sharp. S. and Crouch, S. L. (1986). Boundary integral methods for thermoelasticity problems. J. Appl. Mech. 53,
298-302.

Sladek. V. and Sladek, J. (1983). Boundary integral equation method in thermoelasticity Part I: General analysis.
Appl. Math. Modelling 7, 241-253.

Slidek. V. and Sladek. J. (1984a). Boundary integral equation method in thermoelasticity Part 1I1: Uncoupled
thermoelasticity. 4ppl. Math. Modelling 8, 413-418,.

Slidek. V. and Sladek, J. (1984b). Boundary integral equation method in two-dimensional thermoelasticity. Engng
Anal. 1, 135-148.

Tanaka, M. and Tanaka, K. (1981). Boundary element approach to dynamic problems in coupled thermo-
elasticity—1. Integral equation formulation. Sofid Mech. Arch. 6, 467-491.

Tanaka. M., Togoh. H. and Kikuta. M. (1984). Boundary element method applied to 2-D thermoelastic problems
in steady and non-steady states. Engng Anal. 1, 13-19.

Timoshenko. 8. P. and Goodier. J. N. (1970). Theory of Elasticity. McGraw-Hill. New York.

APPENDIX: COUPLED QUASISTATIC THERMOELASTIC KERNELS

Two-dimensional (plane strain) kernels are provided, based upon continuous source and force fundamental
solutions. As a result, the following relationships must be used to determine the proper form of the functions
required in the boundary element discretization. That s,

Gr(X=8) = G(X~&.nAp) forn=1

Gi(X—8§) = Gy(X~§.nA) ~G (X~ (n— 1AL forn> 1,
with similar expressions holding for all the remaining kernels. In the specification of these kernels below, the
arguments (Y =¢,¢) are assumed.

In two dimensions, the indices

i, j.k.0 vary from{to 2
a fi vary from| to 3

/] equals 2.
Additionally,

x, coordinates of integrition point

§, coordinates of field point

z

Vi =X =g,
2
rTEYY
r
n= (cl)”

_ (1 =2v) 0,8° _v=v

¢ -
YT L 42k pe,  1-v,

k A+2u
¢= — = ~.
pe A+ 2

For the displacement kernel,

whercas, for the traction kernel,

_1 1 V¥l 3y par +y,m, A
F.,—;n—,(—,jv—,[—( 5 )f.(n)—(—~—,——>f:(n)+(—,—)f,(n)]

1 uff YVt
Fg= ; (m)[< ) )fa(’l) +("r)fs('l)]
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— dx
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Giln) = 1+, {I -k (n)}
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.
E -
pan, %)
duln) = v,ﬁ'). A
nz
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Ly = (4 =2y =, {1~ R ()}

Fole) = (=20 = f1=2¢ "+ k0
< ni ﬁl(")
T = Ty T
NG v
f1(’}) = "37" - E;}F-
Jotm) =A@
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Fy( ‘@)
T "12‘“"‘) + Ty
Jomy=e
For the interior stress kernels,
uv | OGy, EG,, 2G,, .
Exl; = !‘2?“1‘5‘5; +u a{[ + E -—/fb,/G,“
Z;w L”F,l ‘?Fﬂ 6Fﬂ o
Dxa,l = r:?:;é”‘éé—,— +u Z{E: + Z "B‘Sufm
where
oG, | 1 2 Gaye Say,\ . 2y -
P “é&dk(:ﬁ[( B “') W>*( I (e e R+ 22 ) (6= aw) —es1 =)
tG,p, i ﬁ Yi¥e y, l(ﬂ)
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